The Amazing World Of Spiders

written by Deathclaw

This guide will delve into the amazing world of spiders, showing you that you need not to be afraid of these tiny arachnids. from orb weaver spiders to the wolf spider, i will give you a whole new appreciation for these cute eight legged creatures (i highly discourage anyone to do any unsafe acts with a spider, as im sure you know)

Last Updated

05/31/21

Chapters

8

Reads

266

Orb-weaver spiders (Araneidae)

Chapter 2
The Orb-weaver spider (Araneidae) is the most common group of builders of spiral wheel shaped webs often found in gardens and forests. Orb-weaver spiders are extremely docile, and will often flee at the first sign of a threat. Orb-weaver spiders are very beneficial because of the pests they eat. Generally, orb-weaving spiders are three-clawed builders of flat webs with sticky spiral capture silk. The building of a web is an engineering feat, begun when the spider floats a line on the wind to another surface. The spider secures the line and then drops another line from the center, making a "Y". The rest of the scaffolding follows with many radii of non-sticky silk being constructed before a final spiral of sticky capture silk. The third claw is used to walk on the non-sticky part of the web. Characteristically, the prey insect that blunders into the sticky lines is stunned by a quick bite, and then wrapped in silk. If the prey is a venomous insect, such as a wasp, wrapping may precede biting and/or stinging. The webs of a few species are strong enough to capture small vertebrates, including bats and birds.
Many orb-weavers build a new web each day. Most orb-weavers tend to be active during the evening hours; they hide for most of the day. Generally, towards evening, the spider will consume the old web, rest for approximately an hour, then spin a new web in the same general location. Thus, the webs of orb-weavers are generally free of the accumulation of detritus(dead particulate organic material) common to other species, such as black widow spiders. Some orb-weavers do not build webs at all. Members of the genera Mastophora in the Americas, Cladomelea in Africa, and Ordgarius in Australia produce sticky globules, which contain a pheromone analog. The globule is hung from a silken thread dangled by the spider from its front legs. The pheromone analog attracts male moths of only a few species. These get stuck on the globule and are reeled in to be eaten. Both types of bolas spiders are highly camouflaged and difficult to locate. The spiny orb-weaving spiders in the genera Gasteracantha and Micrathena look like plant seeds or thorns hanging in their orb-webs. Some species of Gasteracantha have very long, horn-like spines protruding from their abdomens.

One feature of the webs of some orb-weavers is the stabilimentum, a crisscross band of silk through the center of the web. It is found in several genera, but Argiope – the yellow and banded garden spiders of North America – is a prime example. As orb-weavers age, they tend to have less production of their silk, many adult orb-weavers can then depend on their coloration to attract more of their prey. The band may be a lure for prey, a marker to warn birds away from the web, and a camouflage for the spider when it sits in the web. The stabilimentum may decrease the visibility of the silk to insects, thus making it harder for prey to avoid the web.The orb-web consists of a frame and supporting radii overlaid with a sticky capture spiral, and the silks used by orb-weaver spiders have exceptional mechanical properties to withstand the impact of flying prey. During the Cretaceous, a radiation of angiosperm plants and their insect pollinators occurred.
Fossil evidence shows that the orb web was in existence at this time, which permitted a concurrent radiation of the spider predators along with their insect prey. The capacity of orb–webs to absorb the impact of flying prey led orbicularian spiders to become the dominant predators of aerial insects in many ecosystems. Insects and spiders have comparable rates of diversification, suggesting they co-radiated, and the peak of this radiation occurred 100 Mya before the origin of angiosperms. Vollrath and Selden (2007) make the bold proposition that insect evolution was driven less by flowering plants than by spider predation – particularly through orb webs – as a major selective force.

Most arachnid webs are vertical and the spiders usually hang with their head downward. A few webs, such as those of orb-weavers in the genus Metepeira have the orb hidden within a tangled space of web. Some Metepiera are semisocial and live in communal webs. In Mexico, such communal webs have been cut out of trees or bushes and used for living fly paper. In 2009, workers at a Baltimore Wastewater Treatment Plant called for help to deal with over 100 million orb-weaver spiders, living in a community that managed to spin a phenomenal web that covered some 4 acres of a building with spider densities in some areas reaching 35,176 spiders per cubic meter. The oldest known true orb-weaver is Mesozygiella dunlopi, from the Lower Cretaceous. Several fossils provide direct evidence that the three major orb-weaving families, namely Araneidae, Tetragnathidae and Uloboridae, had evolved by this time, about 140 million years ago. They probably originated during the Jurassic (200 to 140 million years ago). Based on new molecular evidence in silk genes, all three families are likely to have a common origin.

The two families, Deinopoidea and Araneoidea, have similar behavioral sequences and spinning apparatuses to produce architecturally similar webs. The Araneidae weave true viscid silk with an aqueous glue property, and the Deinopoidea use dry fibrils and sticky silk. The Deinopoidea (including the Uloboridae), have a cribellum – a flat, complex spinning plate from which the cribellate silk is released.

They also have a calamistrum – an apparatus of bristles used to comb the cribellate silk from the cribellum. The Araneoidea, or the "ecribellate" spiders, do not have these two structures. The two families of orb-weaving spiders are morphologically very distinct, yet there is much similarity between their web form and web construction behavior. The cribellates retained the ancestral character, yet the cribellum was lost in the escribellates. The lack of a functional cribellum in araneoids is most likely synapomorphic.

If the orb-weaver spiders are a monophyletic group, the fact that only some species in the group lost a feature adds to the controversy. The cribellates are split off as a separate taxon that retained the primitive feature, which makes the lineage paraphyletic and not synonymous with any real evolutionary lineage. The morphological and behavioral evidence surrounding orb webs led to the disagreement over a single origin or a dual origin. While early molecular analysis provided more support for a monophyletic origin, other evidence indicates that orb-weavers evolved earlier phylogenetically than previously thought, and were extinct at least three times during the Cretaceous.
Hogwarts is Here © 2024
HogwartsIsHere.com was made for fans, by fans, and is not endorsed or supported directly or indirectly with Warner Bros. Entertainment, JK Rowling, Wizarding World Digital, or any of the official Harry Potter trademark/right holders.
Powered by minerva-s